Hiperautomatyzacja

Hiperautomatyzacja (Hyper-Automation) to zbiór wielu technologii czy narzędzi automatyzujących wiele procesów biznesowych w firmach. Hiperautomatyzacja jest jednym z elementów strategii cyfrowej transformacji (Digital Transformation) i często jest wdrażana razem z innymi projektami transformacyjnymi.

W skład technologii, które można zaliczyć do pojęcia Hipeautomatyzacji mogą wchodzić:

  • RPA – Robotic Process Automation – automatyzacja procesów poprzez zastosowanie robotów, obecnie bardzo popularna technologia.
  • Chatboty, Voiceboty – narzędzia do automatycznej komunikacji z klientami używane już powszechnie w kontakcie z klientem przez stronę internetową i systemy Call Contact Center.
  • iBPMS – Intelligent Business Process Management Systems – inteligentne systemy do zarządzania procesami biznesowymi.
  • Process and Data Mining dla Big Data – narzędzia do eksploracji procesów biznesowych.
  • OCR – Optical Character Recognition – narzędzia do rozpoznawania tekstu, stosowane od dawna, ciągle potrzebne i wchodzące w kolejne obszary procesów biznesowych.
  • LowCode – systemy do budowania aplikacji bez konieczności kodowania lub z niewielką ilością kodu, które są przyszłością developmentu.
  • AI – Artificial Intelligence czyli narzędzia sztucznej inteligencji szukające szerokiego zastosowania w większości obszarów biznesowych firm.

Jeśli potrzebujesz doradztwa lub audytu procesów pod katem wykorzystania narzędzi Hiperautomatyzacji w przedsiębiorstwie to zapraszamy do kontaktu.

Zapraszamy do zapoznania się z ofertą Doradztwa Strategicznego IT i Strategii IT

Zapraszamy do kontaktu:

pfederowicz@gotechnologies.pl

Ponad 200 zadowolonych klientów

Architektura systemów pod Big Data

Duże ilości danych wymagają zaplanowania architektury pod kątem ich zbierania, przechowywania, ich analizy czy udostępniania do innych systemów. W tradycyjnym modelu dane są zbierane przez hurtownie danych z systemów np. ERP, CRM, eCommerce, WMS, itd. a analizowane w systemach klasy Business Inteligence.

Poniżej przykładowy flow od źródeł danych, poprzez ich zbieranie, transformację, przechowywanie i analizę.

Źródła danych dla Big Data

  • Aplikacje mobilne
  • Aplikacje dedykowane
  • Systemy ERP, WMS, CRM, POS, MES, MRP, APS, TMS, itd.
  • Systemy eCommerce jak sklepy internetowe, marketplace
  • Bazy OLTP
  • Bazy logów, eventów
  • API innych firm
  • itd.

Zbieranie i transformacja danych

  • Konektory
  • Zbieranie danych
  • Workflow Manager
  • Platforma Spark
  • Python Libs
  • Batch Query Engine
  • Event Streaming

Przechowywanie danych

  • Data lake
  • Data warehouse

Analiza danych, predictive, sztuczna inteligencja (AI – Artificial Intelligence), uczenie maszynowe (Machine Learning)

  • Data Science Platform
  • Biblioteki Machine Learning
  • Analityka czasu rzeczywistego

Rezultaty analizy danych

  • Dashboardy
  • Wbudowana analityka
  • Rozszerzona analityka
  • Aplikacje wbudowane, frameworki app

Powyższy schemat architektury pozwala na zbieranie danych biznesowych, wyciąganie danych z systemów operacyjnych, dostarczanie danych do magazynów danych wg. określonych schematów, transformację danych dla narzędzi analitycznych, przechowywanie danych aby mogły być one używane do analizy z uwzględnieniem kosztów przechowywania, czasów dostępów czy czasów dostarczenia danych, analizę danych poprzez systemy lub platformy do analizy, analizy historyczne i próby przewidywania przyszłości (predictive) aż do prezentacji wyników analizy danych dla wewnętrznych lub zewnętrznych użytkowników np. w systemach czy aplikacjach.

Jakie są najnowsze trendy w architekturze Big Data?

  1. Zmiana systemów On Prem na Cloud Data Warehouse
  2. Zmiana Hadoop na Data Lakes
  3. Zmiany ETP (Extract Transform Load) na ELT (Extract Load Transform)
  4. Zmiana Workflow Manager na Dataflow Automation

Zobacz także:

Zapraszamy do kontaktu:

pfederowicz@gotechnologies.pl

Ponad 200 zadowolonych klientów