Tajemnice Sand Hill Road – Scott Kupor

Recenzja książki Scotta Kupora partnera zarządzającego w Andreessen Horowitz. Zasady rządzące rynkiem Venture Capital.

Ta książka to fascynująca podróż po Dolinie Krzemowej począwszy od upadku bańki internetowej w 2000 r. do czasów aktualnych. Podróż ta jest pokazana przez pryzmat funduszy Venture Capital, spółek technologicznych i założycieli startupów (founderów). Historia zaczyna się od pierwszych inwestycji Venture Capital i Business Angels, pierwszego akceleratora Y Combinator w znane obecnie na całym Świecie startupy jak Airbnb, Oculus, Slac, GitHub, Pinteres czy Instacard.

Ta książka to nie tylko opowieść o powstawaniu startupów, to ogromna wiedza zarówno o rynku kapitałowym w fazach zalążkowych (seed) jak i trudnej drogi do budowania jednorożców wśród startupów. Drogi okupionej ciężką pracą, błędami, zdrowiem.

Scott Kupor jako wieloletni pracownik największych funduszy inwestycyjnych pokazuje startupom jak pracują fundusze Venture Capital, skąd biorą pieniądze, czym się kierują podejmując decyzje inwestycyjne, jak wspierają swoje spółki portfelowe, itd. Wiedza ta jest przydatna aby founderzy startupów rozumieli drugą stronę, ich politykę inwestycyjną, jej cele, zamierzenia i aby cele obu stron były jak najbardziej zbliżone i jasne, a poszukiwanie inwestora VC przemyślane i zrozumiane. Fundusze VC to nie tylko źródło finansowania to przeogromne źródło kontaktów, wiedzy, doświadczenia, potencjalnej synergii pomiędzy spółkami portfelowymi, itd. (smart money).

Jako founderzy lub członkowie zespołu znajdziecie w tej książce ogromną dawkę praktycznej wiedzy na tematy jak:

  • Zakładanie startupu
  • Finansowanie z zadłużenia czy kapitału własnego?
  • Czy Twój startup powinien sięgnąć po kapitał Venture Capital?
  • Vesting akcji założycielskich
  • Własność intelektualna (IP) w startupach
  • Opcje pracownicze, programy motywacyjne
  • Proces pozyskania kapitału z funduszu VC
  • IPO droga do exitu dla VC
  • Wycena startupu
  • Dobry Term Sheet od A do Z
  • Jak wybrać fundusz VC
  • Kryzysy w startupach
  • Konflikty startup – fundusz
  • i wiele innych.

Gorąco polecam książką zarówno dla członków startupów, którzy rozpoczynają swoją drogę lub szukają finansowania dla swojego biznesu jak i także dla inwestorów i członków zespołów funduszy inwestycyjnych.

Link do wydawnictwa MIT

Przemysław Federowicz

Technologiczne trendy w Retail

Retail wraz z eCommerce są branżami, z którymi spotykamy się na co dzień i możemy obserwować zmiany technologiczne i procesowe jakie w nich zachodzą. Obecnie technologia staje się dojrzalsza i tańsza czego rezultatem są projekty autonomicznych i samoobsługowych sklepów, aplikacji lojalnościowych, itd. Poniżej znajdują się najciekawsze trendy technologiczne w branży Retail.

  • IoT (Internet of Things) – technologia inteligentnych czujników, identyfikacja zachowań, personalizacja, wykorzystanie aplikacji mobilnych czy płatności w świecie online. Technologie jak iBeacons, Bluetooth, GPS, Wearables, RFID, itd. Obecnie pojawiają się trendy jak AIoT (Artificial Internet of Things). Zobacz: Doradztwo IoT
  • Programy lojalnościowe, Aplikacje i Smartphony – budowanie lojalności poprzez technologię i udogodnienia jak usługi komplementarne, zbieranie punktów, promocje, karty, itd.
  • Elastyczne systemy POS – systemy POS (Point of Sales) ciągle pozostają kluczowym elementem realizacji usług w Retail. Systemy te jednakże nie spełniają nowych trendów czyli nie można ich zmieniać szybko dostosowując je do nowych potrzeb klientów. Przyszłością są elastyczne i samoobsługowe systemy informatyczne. Zobacz: Systemy POS
  • Kasy bezobsługowe, płatności mobilne i bez obsługowe sklepy – pełny fulfilment to przyszłość zakupów, jednakże tego typu technologie potrzebują czasu, zmiany mentalności klientów i perfekcyjnej technologii (w tym UX – User Experience, UI – User Interface).
  • User Experience – szczególnie w procesach obsługi klienta, reklamacjach czy zwrotach oraz w wykorzystaniu technologii samoobsługowej. Źle zaprojektowane interfejsy możemy spotykać w codziennych zakupach. Zobacz: Doradztwo UX, UI
  • Efektywne zatowarowanie sklepów – predykcja zatowarowania sklepów, predykcja zachowań konsumenckich, analiza sprzedaży w danych sklepach, regionach, itd. Wykorzystanie Big Data i Sztucznej Intelignencji (AI). Zobacz: Systemy BI (Business Inteligence)
  • Sztuczna inteligencja (AI – Artificial Inteligence) – wykorzystanie dużych zbiorów danych Big Data, często chmury (Cloud Computing) oraz algorytmów Machine i Deep Learning.
  • Rozszerzona rzeczywistość AR (Augmented Reality) – technologia, która zaczyna wchodzić np. do branży Fashion zarówno w kanałach eCommerce jak i sklepach typu Showroom, często łączona z wirtualną rzeczywistością (VR – Virtual Reality).
  • Booty, Czaty i asysta – pełna automatyzacja procesów kontaktu klienta np. w procesach zwrotów czy reklamacjach.
  • Automatyzacja magazynów – wykorzystanie najnowszych trendów w Automatyce Magazynowej np. pojazdy AGV (Automated Guided Vehicles), systemów idealnego załadowanie samochodów transportowych czy magazynów automatycznych. Zobacz: Automatyzacja Procesów Magazynowych, czy Algorytmy Tetris.
  • Traceabbility produktów – pełne śledzenie partii produktów od produkcji do klienta. Śledzenie i zarządzanie cyklem życia produktów. Zobacz: Doradztwo Traceability
  • Produkcja energii elektrycznej na potrzeby sklepów – wykorzystanie energii elektrycznej z dużej powierzchni obiektów handlowych jak dachy, odzyskiwanie ciepła z wewnątrz obiektów, itd.
  • Sieci Connectivity – sieci jak 5G łączące urządzenia i czujniki (IoT) pomiędzy sobą i serwerami np. w chmurze.

Zobacz także: Doradztwo technologiczne i procesowe dla Retail

Zapraszamy do kontaktu:

pfederowicz@gotechnologies.pl

Ponad 200 zadowolonych klientów

Trendy technologiczne 2020 – 2021

Obecnie obserwujemy kilka dominujących trendów technologicznych, które będą miały wpływ na nasze życie i biznesy w najbliższych miesiącach i latach. Dodatkowo dzięki takim zjawiskom jak Covid pojawiają się nowe trendy lub zostają wzmocnione inne.

Poniżej lista zaobserwowanych trendów w rozwoju technologii na świecie:

  • Robotyzacja i automatyzacja procesów – zastępowanie ludzi w procesach powtarzalnych przez systemy informatyczne, unikanie błędów ludzkich i minimalizacja kosztów zatrudnienia i szkolenia personelu. Zobacz także RPA – Robotic Process Automation
  • Blockchain – wykorzystanie technologii blockchain np. w jednostkach rządowych, samorządowych i służbie zdrowia.
  • Chmura, Cloud Computing – wykorzystanie chmury zarówno w corowych procesach biznesowych jak i pomocniczych. Przenoszenie do chmury obliczeń, systemów i baz danych. Zobacz: doradztwo Cloud
  • Big Data – Zbieranie dużych ilości danych z wielu źródeł i ich łączenie w celu wykorzystania w systemach podejmowania decyzji. Zobacz: doradztwo Big Data
  • Sztuczna Inteligencja (Artificial Inteligence) – Wykorzystanie algorytmów sztucznej inteligencji w tym uczenia maszynowego (Deep i Machine Learning) w nowoczesnym biznesie i handlu internetowym.
  • Praca zdalna i dygitalizacja procesów backoffice – trend nabierający na sile związany głównie z pracą zdalną spowodowaną pandemią wirusa Covid. Narzędzia pracy zdalnej, dostęp do systemów firmy oraz dokumentów (EOD – Elektroniczny Obieg Dokumentów, DMS, EMS) w postaci cyfrowej z dowolnego miejsca na Świecie.
  • Handel elektroniczny (eCommerce) – istniejący i silny trend wzrostowy sprzedaży produktów i usług poprzez kanały cyfrowe jak eCommerce, Mobile, Social Media, Marketplace, etc.. Zobacz usługi dla eCommerce
  • Monetyzacja danych – zbieranie, łączenia, tłumaczenie i poszukiwanie nowych strumieni przychodów opartych na danych. Zobacz: nowe strumienie przychodów.
  • Systemy predykcyjne, systemy podejmowania decyzji – systemy prodykcyjne, systemy wspierające podejmowanie decyzji, systemy System Business Intelligence (BI)Business Intelligence (BI) oparte na hurtowniach danych.
  • Mobile – trend posiadania i wykorzystywania urządzeń mobilnych, transmisji danych, wykorzystania technologii 5G i Internetu Rzeczy (IoT).
  • Omnichannel – sprzedaż i tracking użytkowników w świecie offline (Retail) i w internecie (mobile, eCommerce, social media, itd.) oraz w Contact Center. Zobacz doradztwo technologiczne dla Omnichannel
  • 5G – wykorzystanie sieci dużych przepustowości do integracji urządzeń, pojazdów i ludzi w czasie rzeczywistym. Zobacz Doradztwo 5G
  • Privacy – ochrona danych użytkowników w sieci. Bardzo silny trend występujacy np. w Niemczech i USA.
  • Inteligentne Miasta (Smart City) – technologie dla inteligentnych miast wykorzystujące technologie 5G, IoT, Big data i chmury. Zobacz doradztwo Smart City
  • Autonomiczne pojazdy – trend przyszłości zarówno w samochodach, dronach, statkach powietrznych jak i morskich.
  • Cyfrowy bliźniak (Digital Twin) – testowanie realnego świata w stworzonych ich cyfrowych modelach.
  • Bezpieczeństwo (Cybersecurity) – zabezpieczenie danych zarówno prywatnych jak i firmowych przed wyciekami i kradzieżą.

Zapraszamy do kontaktu:

pfederowicz@gotechnologies.pl

Ponad 200 zadowolonych klientów

Hurtownie danych

Hurtownie danych są systemami integrującymi duże ilości danych (Big Data) z wielu źródeł, często organizowane tematycznie np. hurtownia danych finansowych. Hurtownie danych są podstawą w rozproszonych i większych organizacjach do działań opartych na danych jak analizy, forecasting, podejmowania decyzji czy raportowanie operacyjne. Hurtownie danych pracują w trybie do odczytu i z ich danych można korzystać np. przez zapytania SQL, aplikacje jak Tableau, Qlick czy Power Bi. Hurtownie danych są także podstawą zasilania systemów klasy BI Business Intelligence, które pozwalają na analizę danych np. za pomocą kostek analitycznych OLAP (Online Analytical Processing).

Na rynku możemy spotkać hurtownie danych wdrażanych na chmurze (Cloud) lub na własnych serwerach. Oba warianty mają swoje zalety i wady. Ciekawym trendem są hurtownie danych

Zastosowanie hurtowni danych:

  • Wykorzystanie dobrej jakości danych do celów analitycznych
  • Wykorzystanie dobrej jakości danych do celów decyzyjnych strategicznych i operacyjnych
  • Archiwizacja danych
  • Raporty

Źródłami zasilania hurtowni danych mogą być:

Jeśli potrzebujesz wsparcia w systemach informatycznych czy Big Data zapraszamy do kontaktu.

Zobacz także:

Zapraszamy do kontaktu:

pfederowicz@gotechnologies.pl

Ponad 200 zadowolonych klientów

Uczenie maszynowe – Machine Learning, Uczenie głębokie – Deep Learning

Pojęcia Uczenie maszynowe (Machine Learning), Głębokie uczenia (Deep Learning) czy Sztuczna Inteligencja (AIArtificial Intelligence) pojawiają się w ostatnich dość często i są grupowane jako technologie automatyzujące, predykcyjne oraz wspierające podejmowanie decyzji. Technologie opierają się na sieciach neuronowych. To one budzą zarówno zachwyt jak i przerażenie.

Machine Learning i sieci neuronowe

Machine Learning jest podstawą obecnych systemów Sztucznej Inteligencji i zajmuje się eksploracją danych (Data Mining). Machine Learning koncentruje się na wyszukiwaniu wzorców danych w dużych zbiorach danych zasilanych przez różne systemy lub procesy. Uczenie maszynowe często z uwagi na potrzebę dużej mocy obliczeniowej korzysta z chmur obliczeniowych (Cloud) lub specjalistycznych superkomputerów.

Deep Learning a ludzie

Deep Learning jako „dziecko” Machine Learningu pozwala skoncentrować się na człowieku i jego zachowaniach. Deep learning potrafi wchodzić w interakcję z człowiekiem, słucha dźwięków, muzyki, głosu, obserwuje np. rozpoznając obrazy. Deep Learning jest bardzo popularny z uwagi na koncentracji na zachowaniach człowieka, co w przypadku obecnych biznesów jest kluczowe.

Gdzie najprościej wykorzystać Machine Learning?

W organizacjach gdzie są spełnione dwa elementy. Są zbierane duże ilości danych (Big Data) oraz, w których innowacja jest w DNA firmy. Duże ilości aktualnych danych pozwalają „uczyć” systemy zachowań np. użytkowników czy linii produkcyjnej. Czym więcej danych na początku tym lepsze wyniki uczenia. Jeśli danych jest mniej systemy muszą za każdym razem kiedy wystąpi nieoczekiwana sytuacja uczyć się, co wydłuża proces wdrożenia i produkcyjnego wykorzystania tychże systemów.

Zobacz naszą ofertę doradztwa technologicznego:

Zapraszamy do kontaktu:

pfederowicz@gotechnologies.pl

Ponad 200 zadowolonych klientów

Data Management – Big Data

Zarządzanie danymi jest jednym z ważniejszych zadań działów informatycznych i Dyrektorów IT (CIOChief Information Officer). Dane są zbierane przez procesy zaimplementowane w systemach, aplikacjach czy czujnikach (np. IoT), przetwarzane i udostępniane w jeszcze kolejnych systemach czy wydrukach (raportach). Dane są wymieniane przez różne systemy, łączone, interpretowane. Dane zarabiają, dane prognozują, na danych opieramy i strategię i działania operacyjne. GoTechnologies wspiera organizacje z branż eCommerce, Omnichannel, Retail, Przemysł, Automotive, Logistyka w wykorzystaniu danych w rozwoju i optymalizacji biznesu.

Zarządzanie danymi

Zarządzadnie danymi to m.in:

  • Tworzenie danych przez procesy zaimplementowane w systemach, aplikacje czy urządzenia fizyczne (czujniki).
  • Przesyłanie danych (connectivity) przez sieci LAN, WiFi, internet, itd. – bezpieczne!
  • Przechowywanie danych w bazach danych lub w chmurze
  • Zapewnienie dostępu do danych przez użytkowników czy inne systemy
  • Archiwizacja i proces niszczenia danych

Zbieranie danych, integracja danych

Dane są zbierane w różnych systemach np. ERP, CRM, eCommerce, PIM, WMS, MRP, MES, SCM czy bazach danych np. z czujników IoT czy innych systemów OT (Operational Technology – Technologia Operacyjna).

Przetwarzanie danych, Analiza danych

Dane z wielu źródeł (systemy, bazy danych) integrują się w hurtowniach danych, gdzie są udostępniane np. dla systemów raportowych BI lub systemów wspomagających podejmowanie decyzji.

Dane to biznes

Wykorzystanie danych w biznesie to kluczowy element przewagi konkurencyjnej. Spółki digitalowe zbierają dane z wszystkich możliwych źródeł, często na początku nie mając pomysłu do ich wykorzystania np. google.

Wyzwania firm z danymi

Firmy borykają się z:

  • Ciągłym, logarytmicznym przyrostem danych ze starych i ciągle nowych systemów czy urządzeń
  • Przetwarzaniem w chmurze
  • Bezpieczeństwem przesyłania i przetwarzania danych
  • Brakiem jakości danych w systemach i brakiem jednoznacznych masterów danych w procesach
  • Utrzymanie wysokiej wydajności i dostępności do danych
  • Compliance z regulacjami prawnymi jak np. RODO
  • Brak pomysłów na monetyzację danych
  • itd.

Zobacz naszą ofertę doradczą w obszarze zarządzania danymi Big Data

Zapraszamy do kontaktu:

pfederowicz@gotechnologies.pl

Ponad 200 zadowolonych klientów

Poziom gotowości technologicznej TRL w Startupach

Poziom gotowości startupu zarówno rozwoju produktu jak i gotowości do komercjalizacji TRL (Technology Readiness Level) określa się w skali od 1 do 9. Skala jeden to ocena wstępnej koncepcji, walidacja pomysłu, realności wdrożenia, natomiast skala dziewięć to gotowość produktu do sprzedaży (po wszystkich testach, certyfikacji, itd.). TRL określa zatem poziom dojrzałości produktu do jego komercjalizacji. Czym wyżej w skali tym mniejsze ryzyko niepowodzenia i szybszy czas rozpoczęcia sprzedaży produktu.

Skala ta ułatwia zewnętrznym inwestorom śledzenie postępu rozwoju produktów i jest pomocnym narzędziem i wskaźnikiem rozwoju KPI (Key Performance Indicator). TRL jest powszechnie stosowany nie tylko w Polsce, ale także jest standardem w Unii Europejskiej w Stanach Zjednoczonych, gdzie został pierwotnie wymyślony przez NASA w latach 70-tych. Z punktu widzenia inwestora czym wyższym TRL tym większa szansa na sukces i mniejsze ryzyko inwestycyjne. Oczywiście należy pamiętać także o własnym IT Due Diligence, nie zawsze founderzy rozumieją TRL, a wręcz podwyższają skalę dojrzałości produktu.

Skalę TRL można podzielić na trzy grupy:

  • TRL 1: Prace koncepcyjne, analiza pomysłu, produktu, realności jego stworzenia
  • TRL 2-6: Badania przemysłowe nad produktem
  • TRL 7-9: Prace rozwojowe nad produktem

Skala TRL w NCBiR:

  • TRL 1: Zaobserwowano i opisano podstawowe zasady danego zjawiska – najniższy poziom gotowości technologii, oznaczający rozpoczęcie badań naukowych w celu wykorzystania ich wyników w przyszłych zastosowaniach. Zalicza się do nich między innymi badania naukowe nad podstawowymi właściwościami technologii.
  • TRL 2: Określono koncepcję technologii lub jej przyszłe zastosowanie. Oznacza to rozpoczęcie procesu poszukiwania potencjalnego zastosowania technologii. Od momentu zaobserwowania podstawowych zasad opisujących nową technologię można postulować praktyczne jej zastosowanie, które jest oparte na przewidywaniach. Nie istnieje jeszcze żaden dowód lub szczegółowa analiza potwierdzająca przyjęte założenia.
  • TRL 3: Potwierdzono analitycznie i eksperymentalnie krytyczne funkcje lub koncepcje technologii. Oznacza to przeprowadzenie badań analitycznych i laboratoryjnych, mających na celu potwierdzenie przewidywań badań naukowych wybranych elementów technologii. Zalicza się do nich komponenty, które nie są jeszcze zintegrowane w całość lub też nie są reprezentatywne dla całej technologii.
  • TRL 4: Zweryfikowano komponenty technologii lub podstawowe jej podsystemy w warunkach laboratoryjnych. Proces ten oznacza, że podstawowe komponenty technologii zostały zintegrowane. Zalicza się do nich zintegrowane „ad hoc” modele w laboratorium. Uzyskano ogólne odwzorowanie docelowego systemu w warunkach laboratoryjnych.
  • TRL 5: Zweryfikowano komponenty lub podstawowe podsystemy technologii w środowisku zbliżonym do rzeczywistego. Podstawowe komponenty technologii są zintegrowane z rzeczywistymi elementami wspomagającymi. Technologia może być przetestowana w symulowanych warunkach operacyjnych.
  • TRL 6: Dokonano demonstracji prototypu lub modelu systemu albo podsystemu technologii w warunkach zbliżonych do rzeczywistych. Oznacza to, że przebadano reprezentatywny model lub prototyp systemu, który jest znacznie bardziej zaawansowany od badanego na poziomie V, w warunkach zbliżonych do rzeczywistych. Do badań na tym poziomie zalicza się badania prototypu w warunkach laboratoryjnych odwzorowujących z dużą wiernością warunki rzeczywiste lub w symulowanych warunkach operacyjnych.
  • TRL 7: Dokonano demonstracji prototypu technologii w warunkach operacyjnych. Prototyp jest już prawie na poziomie systemu operacyjnego. Poziom ten reprezentuje znaczący postęp w odniesieniu do poziomu VI i wymaga zademonstrowania, że rozwijana technologia jest możliwa do zastosowania w warunkach operacyjnych. Do badań na tym poziomie zalicza się badania prototypów na tzw. platformach badawczych.
  • TRL 8: Zakończono badania i demonstrację ostatecznej formy technologii. Oznacza to, że potwierdzono, że docelowy poziom technologii został osiągnięty i technologia może być zastosowana w przewidywanych dla niej warunkach. Praktycznie poziom ten reprezentuje koniec demonstracji. Przykłady obejmują badania i ocenę systemów w celu potwierdzenia spełnienia założeń projektowych, włączając w to założenia odnoszące się do zabezpieczenia logistycznego i szkolenia.
  • TRL 9: Sprawdzenie technologii w warunkach rzeczywistych odniosło zamierzony efekt. Wskazuje to, że demonstrowana technologia jest już w ostatecznej formie i może zostać zaimplementowana w docelowym systemie. Między innymi dotyczy to wykorzystania opracowanych systemów w warunkach rzeczywistych

Zobacz naszą ofertę doradczą dla startupów i funduszy Venture Capital:

Zapraszamy do kontaktu:

pfederowicz@gotechnologies.pl

Ponad 200 zadowolonych klientów

Metodyka rozwoju oprogramowania DevOps

Nazwa DevOps pochodzi od słów „development” czyli wytwarzanie oprogramowania i „operations” czyli operacje, eksploatacji systemów. Metodyka DevOps ma połączyć światy wytwarzania, testowania, wdrażania, administrowania i utrzymania, często inne, o innych celach i kompetencjach. Kładzie ona nacisk na komunikację pomiędzy działem utrzymania (administratorami systemów) oraz programistów i testerów oprogramowania.

Włączenie administratorów do rozwoju oprogramowania ma ewidentne zalety:

  • Pozwala na szybsze wdrażanie zmian „na produkcję” dzięki czemu biznes osiąga więcej korzyści np. częstsze wdrożenia zmian w platformie eCommerce (sklep internetowy) lub na platformie SaaS
  • Pozwala na lepsze wykorzystaniu posiadanych zasobów serwerowych i obniżeniu kosztów
  • Zwiększa wydajność i bezpieczeństwo systemów obniżając koszty utrzymania.

Metoda DevOps wykorzystuje szeroko zdalne narzędzia do komunikacji pomiędzy członkami zespołu jak wiki, wideokonferencje, czaty, itd. Dlatego bardzo dobrze sprawdza się w okresie pandemii wirusa corona Covid-19.

Metodyka i inżynierowie DevOps lubą pracować ze zwinnymi metodykami wytwarzania oprogramowania (Agile np. Scrum) czy z środowiskami chmurowymi (np. Microsoft Azure, Google GCP, Amazon AWS).

Metodyka DevOps pozwala na lepsze zarządzania cyklem życia aplikacji (oprogramowania), gdzie już w fazie planowania przewidujemy przyszłość i rozwój systemu w kolejnych latach.

Zobacz także:

Zapraszamy do kontaktu:

pfederowicz@gotechnologies.pl

Ponad 200 zadowolonych klientów

Systemy Embedded

Systemy wbudowane (systemy Embedded) możemy spotkać praktycznie wszędzie od przemysłu, poprzez sklepy, transport po nasze inteligentne domy (Smart Home). Są to systemy dedykowane pod obsługę danego urządzenia którym może być sensor IoT, urządzenia w bankomacie, hardware sterujący lodówką, sterowniki PLC, itd.

Systemy Embedded są przeznaczone do wykonywania konkretnego zadania. Muszą charakteryzować się bezpieczeństwem, wydajnością, stabilnością czy niezawodnością. Od stopnia przyjętej niezawodności decyduje architektura rozwiązania czyli wykorzystanie systemu operacyjnego, podział zadań na poszczególne urządzenia, ich redundancja, itd.

Jeśli potrzebujesz wsparcia w systemach Embedded, IoT, sieciach LoRa, SigFox, 5G zapraszamy do kontaktu. Nasi inżynierowie doradzą, wesprą w działaniach.

Zobacz także:

Zapraszamy do kontaktu:

pfederowicz@gotechnologies.pl

Ponad 200 zadowolonych klientów

Startupy IoT – Internet of Things

Urządzenia Internetu Rzeczy (IoT – Internet of Things) obecnie można spotkać zarówno w domach, fabrykach (IIoTIndustrial Internet of Things), podczas leczenia czy rehabilitacji, podczas uprawiania sportu, w inteligentnych miastach (Smart Cities) w transporcie, itd. Dostępność urządzeń IoT jest spowodowana m.in. łatwym dostępem do szybkich sieci WiFi, Mobile, zmniejszającymi sie cenami urządzeń, wydłużającym się czasem działania na baterii czy coraz większą ilością aplikacji i dostawców urządzeń. Dostęp do 5G także zaczyna potęgować pomysły wykorzystujące 5G i IoT praktycznie wszędzie.

Startupy działające w branży IoT można podzielić na kilka kategorii.

Startupy IoT w podziale na branże

  • IoT Smart Home – inteligentne domy
  • IoT Smart Cities – inteligentne miasta
  • IIoT w Przemyśle (Industrial Internet of Things) – rozwiązania przemysłowe
  • IoT w Medycynie, opiece osób starszych, rehabilitacji, itd. Internet of medical things (IoMT)
  • IoT w Rolnictwie
  • IoT w branży zbrojeniowej, lotniczej i kosmicznej

Startupy IoT w podziale na produkty

  • IoT Middleware & Operation Systems – systemy dla IoT
  • IoT Hardware – sensory IoT, Beacony, Tagi i czytniki tagów, gateways, routers, system on chip, mikrokontrolery, moduły komunikacyjne.
  • IoT Connectivity – Mobile, sieci niskoprądowe LPWAN (SigFox, LoRa), 5G, Bluetoout, NB-IoT, WiFi, VSAT, itd.
  • IoT Platform – connectivity management, platformy analityczne, platformy end to end.
  • IoT Security – bezpieczeństwo urządzeń, bezpieczeństwo sieci, bezpeiczeństwo przesyłania danych i ich gromadzenia.
  • IoT Development Boards & Kits
  • IoT Stacks

GoTechnologies wspiera od lat zarówno największe fundusze Venture Capital m.in. w IT Due Diligence, startupy w rozwoju produktów, pozyskaniu klientów i kapitału jak i największe firmy produkcyjne, eCommerce w zastosowaniu najnowszych technologii, tworzeniu nowych strumieniu przychodowych (monetyzacja danych) czy optymalizacji procesów za pomocą technologii.

Zobacz naszą ofertę doradczą dla startupów i funduszy Venture Capital:

Zapraszamy do kontaktu:

pfederowicz@gotechnologies.pl

Ponad 200 zadowolonych klientów